Aufgaben zur Polynomdivision
Berechne die Nullstellen folgender Funktionen mithilfe der Polynomdivision.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion sind die -Werte, für die wird.
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. in ein.
Die Funktion hat an der Stelle eine Nullstelle. Da , wissen wir, dass den dazugehörigen Linearfaktor besitzt.
Führe nun die Polynomdivision durch.
Die Funktion wird dann , sobald mindestens einer der Faktoren gleich ist. Da die Nullstelle bereits bekannt ist, kannst du die weiteren Nullstellen von bestimmen, indem du das erhaltene Polynom gleich setzt.
Die Funktion hat drei Nullstellen bei , und .
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion sind die -Werte, für die wird.
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. in ein.
Die Funktion hat an der Stelle eine Nullstelle. Da , wissen wir, dass den dazugehörigen Linearfaktor besitzt.
Führe nun die Polynomdivision durch.
Die Funktion wird dann , sobald mindestens einer der Faktoren gleich ist. Da die Nullstelle bereits bekannt ist, kannst du die weiteren Nullstellen von bestimmen, indem du das erhaltene Polynom gleich setzt.
↓ Mitternachtsformel anwenden.
↓ Unter der Wurzel zusammenfassen.
Fall 1:
Fall 2:
Die Funktion hat drei Nullstellen bei , und .
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion sind die -Werte, für die wird.
↓ ausklammern.
Die Funktion wird dann , sobald mindestens einer der Faktoren gleich ist. Da die Nullstelle bereits bekannt ist, kannst du die weiteren Nullstellen von bestimmen, indem du die Klammer gleich setzt.
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. für ein.
Die Funktion hat an der Stelle eine Nullstelle. Da , wissen wir, dass den dazugehörigen Linearfaktor besitzt.
Führe nun die Polynomdivision durch.
Setze das erhaltene Polynom gleich .
↓ Mitternachtsformel anwenden.
↓ Unter der Wurzel zusammenfassen.
Fall 1:
Fall 2:
Die Funktion hat vier Nullstellen bei , , und .
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion sind die -Werte, für die wird.
↓ Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. in ein.
Setze z.B. in ein.
Die Funktion hat an der Stelle eine Nullstelle. Da , wissen wir, dass den dazugehörigen Linearfaktor besitzt.
Führe nun die Polynomdivision durch.
Die Funktion wird dann , sobald mindestens einer der Faktoren gleich ist. Da die Nullstelle bereits bekannt ist, kannst du die weiteren Nullstellen von bestimmen, indem du das erhaltene Polynom gleich setzt.
↓ Mitternachtsformel anwenden.
↓ Unter der Wurzel zusammenfassen.
Fall 1:
Fall 2:
Die Funktion hat drei Nullstellen bei , und .